Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Commun Biol ; 7(1): 468, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632370

RESUMO

Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.


Assuntos
Variação Genética , Serratia marcescens , Serratia marcescens/genética , Ecossistema , Fluxo Gênico , Genômica
2.
Antimicrob Agents Chemother ; 68(5): e0118523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587412

RESUMO

Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.


Assuntos
Mycobacterium tuberculosis , Transcriptoma , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Transcriptoma/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Perfilação da Expressão Gênica/métodos , Antituberculosos/farmacologia , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38490355

RESUMO

OBJECTIVES: Multidrug-resistant/Rifampicin-resistant tuberculosis (TB) is a major obstacle to successful TB control. The recommendation by the World Health Organization to use bedaquiline, pretomanid, linezolid and moxifloxacin (BPaL(M)) for 6 months, based on results of three trials with high efficacy and low toxicity, has revolutionized treatment options. METHODS: In this study, representatives of the Tuberculosis Network European Trialsgroup (TBnet) in 44/54 countries of the WHO Europe region document the availability of the medicines and drug susceptibility testing (DST) of the BPaL(M) regimen through a structured questionnaire between September to November 2023. RESULTS: 24/44 (54.5%), 42/44 (95.5%), 43/44 (97.7%), and 43/44 (97.7%) had access to pretomanid, bedaquiline, linezolid, and moxifloxacin, respectively. Overall, 23/44 (52.3%) had access to all the drugs composing the BPaL(M) regimen. 7/44 (15.9%), 28/44 (63.6%), 34/44 (77.3%) and 36/44 (81.8%) had access to DST for pretomanid, bedaquiline, linezolid and moxifloxacin, respectively. DST was available for all medicines composing the BPaL(M) regimen in 6/44 (13.6%) countries. CONCLUSION: Only in about half of the countries participating in the survey clinicians have access to all the BPaL(M) regimen drugs. In less than a fifth of countries, a complete DST is possible. Rapid scale up of DST capacity to prevent unnoticed spread of drug resistance and equal access to new regimens are urgently needed in Europe.

4.
iScience ; 27(4): 109402, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510115

RESUMO

Serratia marcescens is an opportunistic pathogen that survives in inhospitable environments causing large outbreaks, particularly in neonatal intensive care units (NICUs). Genomic studies revealed that most S. marcescens nosocomial infections are caused by a specific clone (here "Infectious clone"). Whole genome sequencing (WGS) is the only portable method able to identify this clone, but it requires days to obtain results. We present a cultivation-free hypervariable-locus melting typing (HLMT) protocol for the fast detection and typing of S. marcescens, with 100% detection capability on mixed samples and a limit of detection that can reach the 10 genome copies. The protocol was able to identify the S. marcescens infectious clone with 97% specificity and 96% sensitivity when compared to WGS, yielding typing results portable among laboratories. The protocol is a cost and time saving method for S. marcescens detection and typing for large environmental/clinical surveillance screenings, also in low-middle income countries.

5.
Nat Rev Dis Primers ; 10(1): 22, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523140

RESUMO

Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Isoniazida/uso terapêutico
6.
Genome Med ; 16(1): 39, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481348

RESUMO

In the accompanying study, Nimmo and colleagues estimated the dates of emergence of mutations in mmpR5 (Rv0678), the most important resistance gene to the anti-tuberculosis drug bedaquiline, in over 3500 geographically diverse Mycobacterium tuberculosis genomes. This provided important insights to improve the design and analysis of clinical trials, as well as the World Health Organization catalogue of resistance mutations, the global reference for interpreting genotypic antimicrobial susceptibility testing results.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Humanos , Diarilquinolinas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Mutação
7.
Euro Surveill ; 29(12)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516788

RESUMO

BackgroundThe EUSeqMyTB project, conducted in 2020, used whole genome sequencing (WGS) for surveillance of drug-resistant Mycobacterium tuberculosis in the European Union/European Economic Area (EU/EEA) and identified 56 internationally clustered multidrug-resistant (MDR) tuberculosis (TB) clones.AimWe aimed to define and establish a rapid and computationally simple screening method to identify probable members of the main cross-border MDR-TB clusters in WGS data to facilitate their identification and track their future spread.MethodsWe screened 34 of the larger cross-border clusters identified in the EuSeqMyTB pilot study (2017-19) for characteristic single nucleotide polymorphism (SNP) signatures that could identify and define members of each cluster. We also linked this analysis with published clusters identified in previous studies and identified more distant genetic relationships between some of the current clusters.ResultsA panel of 30 characteristic SNPs is presented that can be used as an initial (routine) screen for members of each cluster. For four of the clusters, no unique defining SNP could be identified; three of these are closely related (within approximately 20 SNPs) to one or more other clusters and likely represent a single established MDR-TB clade composed of multiple recent subclusters derived from the previously described ECDC0002 cluster.ConclusionThe identified SNP signatures can be integrated into routine pipelines and contribute to the more effective monitoring, rapid and widespread screening for TB. This SNP panel will also support accurate communication between laboratories about previously identified internationally transmitted MDR-TB genotypes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Polimorfismo de Nucleotídeo Único , Projetos Piloto , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética
9.
Clin Microbiol Infect ; 30(4): 481-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182047

RESUMO

SCOPE: The current tools for tuberculosis (TB) treatment monitoring, smear microscopy and culture, cannot accurately predict poor treatment outcomes. Research into new TB treatment monitoring tools (TMTs) is growing, but data are unreliable. In this article, we aim to provide guidance for studies investigating and evaluating TB TMT for use during routine clinical care. Here, a TB TMT would guide treatment during the course of therapy, rather than testing for a cure at the regimen's end. This article does not cover the use of TB TMTs as surrogate endpoints in the clinical trial context. METHODS: Guidelines were initially informed by experiences during a systematic review of TB TMTs. Subsequently, a small content expert group was consulted for feedback on initial recommendations. After revision, feedback from substantive experts across sectors was sought. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS: The proposed considerations and recommendations for studies evaluating TB TMTs for use during the treatment in routine clinical care fall into eight domains. We provide specific recommendations regarding study design and recruitment, outcome definitions, reference standards, participant follow-up, clinical setting, study population, treatment regimen reporting, and index tests and data presentation. Overall, TB TMTs should be evaluated in a manner similar to diagnostic tests, but TB TMT accuracy must be assessed at multiple timepoints throughout the treatment course, and TB TMTs should be evaluated in study populations who have already received a diagnosis of TB. Study design and outcome definitions must be aligned with the developmental phase of the TB TMT under evaluation. There is no reference standard for TB treatment response, so different reference standards and comparator tests have been proposed, the selection of which will vary depending on the developmental phase of the TMT under assessment. The use of comparator tests can assist in generating evidence. Clarity is required when reporting of timepoints, TMT read-outs, and analysis results. Implementing these recommendations will lead to higher quality TB TMT studies that will allow data to be meaningfully compared, thereby facilitating the development of novel tools to guide individual TB therapy and improve treatment outcomes.


Assuntos
Projetos de Pesquisa , Tuberculose , Humanos , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
11.
Antimicrob Agents Chemother ; 68(1): e0109623, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38038476

RESUMO

Results from clinical strains and knockouts of the H37Rv and CDC1551 laboratory strains demonstrated that ndh (Rv1854c) is not a resistance-conferring gene for isoniazid, ethionamide, delamanid, or pretomanid in Mycobacterium tuberculosis. This difference in the susceptibility to NAD-adduct-forming drugs compared with other mycobacteria may be driven by differences in the absolute intrabacterial NADH concentration.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Etionamida/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mutação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38048026

RESUMO

BACKGROUND: The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections. METHODS: We conducted a prospective genomic surveillance study to assess migration's impact on TB epidemiology in the Czech Republic and Slovakia. Mycobacterium tuberculosis isolates from Ukrainian war refugees and migrants, collected from September 2021 to December 2022 were analyzed alongside 1574 isolates obtained from Ukraine, the Czech Republic, and Slovakia. RESULTS: Our study revealed alarming results, with historically the highest number of Ukrainian tuberculosis patients detected in the host countries. The increasing number of cases of multidrug-resistant TB, significantly linked with Beijing lineage 2.2.1 (p < 0.0001), also presents substantial obstacles to control endeavors. The genomic analysis identified the three highly related genomic clusters, indicating the recent TB transmission among migrant populations. The largest clusters comprised war refugees diagnosed in the Czech Republic, TB patients from various regions of Ukraine, and incarcerated individuals diagnosed with pulmonary TB specialized facility in the Kharkiv region, Ukraine, pointing to a national transmission sequence that has persisted for over 14 years. CONCLUSIONS: The data showed that most infections were likely the result of reactivation of latent disease or exposure to TB before migration rather than recent transmission occurring within the host country. However, close monitoring, appropriate treatment, careful surveillance, and social support are crucial in mitigating future risks, though there is currently no evidence of local transmission in EU countries.

14.
PLOS Glob Public Health ; 3(12): e0001788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117783

RESUMO

Six lineages of Mycobacterium tuberculosis sensu stricto (which excludes M. africanum) are described. Single-country or small observational data suggest differences in clinical phenotype between lineages. We present strain lineage and clinical phenotype data from 12,246 patients from 3 low-incidence and 5 high-incidence countries. We used multivariable logistic regression to explore the effect of lineage on site of disease and on cavities on chest radiography, given pulmonary TB; multivariable multinomial logistic regression to investigate types of extra-pulmonary TB, given lineage; and accelerated failure time and Cox proportional-hazards models to explore the effect of lineage on time to smear and culture-conversion. Mediation analyses quantified the direct effects of lineage on outcomes. Pulmonary disease was more likely among patients with lineage(L) 2, L3 or L4, than L1 (adjusted odds ratio (aOR) 1.79, (95% confidence interval 1.49-2.15), p<0.001; aOR = 1.40(1.09-1.79), p = 0.007; aOR = 2.04(1.65-2.53), p<0.001, respectively). Among patients with pulmonary TB, those with L1 had greater risk of cavities on chest radiography versus those with L2 (aOR = 0.69(0.57-0.83), p<0.001) and L4 strains (aOR = 0.73(0.59-0.90), p = 0.002). L1 strains were more likely to cause osteomyelitis among patients with extra-pulmonary TB, versus L2-4 (p = 0.033, p = 0.008 and p = 0.049 respectively). Patients with L1 strains showed shorter time-to-sputum smear conversion than for L2. Causal mediation analysis showed the effect of lineage in each case was largely direct. The pattern of clinical phenotypes seen with L1 strains differed from modern lineages (L2-4). This has implications for clinical management and could influence clinical trial selection strategies.

15.
Bull World Health Organ ; 101(11): 730-737, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961060

RESUMO

The World Health Organization has developed target product profiles containing minimum and optimum targets for key characteristics for tests for tuberculosis treatment monitoring and optimization. Tuberculosis treatment optimization refers to initiating or switching to an effective tuberculosis treatment regimen that results in a high likelihood of a good treatment outcome. The target product profiles also cover tests of cure conducted at the end of treatment. The development of the target product profiles was informed by a stakeholder survey, a cost-effectiveness analysis and a patient-care pathway analysis. Additional feedback from stakeholders was obtained by means of a Delphi-like process, a technical consultation and a call for public comment on a draft document. A scientific development group agreed on the final targets in a consensus meeting. For characteristics rated of highest importance, the document lists: (i) high diagnostic accuracy (sensitivity and specificity); (ii) time to result of optimally ≤ 2 hours and no more than 1 day; (iii) required sample type to be minimally invasive, easily obtainable, such as urine, breath, or capillary blood, or a respiratory sample that goes beyond sputum; (iv) ideally the test could be placed at a peripheral-level health facility without a laboratory; and (v) the test should be affordable to low- and middle-income countries, and allow wide and equitable access and scale-up. Use of these target product profiles should facilitate the development of new tuberculosis treatment monitoring and optimization tests that are accurate and accessible for all people being treated for tuberculosis.


L'Organisation mondiale de la santé a élaboré des profils de produits cibles contenant des cibles minimales et optimales pour les caractéristiques principales des essais destinés au suivi et à l'optimisation du traitement de la tuberculose. L'optimisation du traitement de la tuberculose fait référence à l'instauration d'un régime de traitement efficace de la tuberculose ou à l'adoption d'un tel régime, avec une probabilité élevée d'obtenir de bons résultats thérapeutiques. Les profils de produits cibles couvrent également les essais de guérison effectués à l'issue du traitement. Les profils de produits cibles ont été élaborés sur la base d'un sondage auprès des parties prenantes, d'une analyse coût-efficacité et d'une analyse du parcours de soins du patient. Des retours supplémentaires des parties prenantes ont été obtenus au moyen d'un processus créé selon la méthode Delphi, d'une consultation technique et d'un appel à commentaires publics sur un projet de document. Un groupe d'élaboration scientifique s'est mis d'accord sur les objectifs finaux lors d'une réunion de concertation. En ce qui concerne les caractéristiques jugées les plus importantes, le document énumère ce qui suit: (i) une grande précision diagnostique (sensibilité et spécificité); (ii) un délai idéal d'obtention des résultats ≤ 2 heures et au maximum de 1 jour; (iii) le type d'échantillon requis doit être peu invasif et facile à obtenir, comme l'urine, l'haleine ou le sang capillaire, ou bien un échantillon respiratoire au-delà des expectorations; (iv) idéalement, l'essai pourrait avoir lieu dans un établissement de santé périphérique sans laboratoire ; et (v) l'essai devrait être abordable pour les pays à revenu faible et intermédiaire et permettre un accès large et équitable ainsi qu'une mise à l'échelle. L'utilisation de ces profils de produits cibles devrait faciliter la mise au point de nouveaux essais de surveillance et d'optimisation du traitement de la tuberculose qui soient précis et accessibles à toutes les personnes suivant un traitement pour la tuberculose.


La Organización Mundial de la Salud ha elaborado perfiles de productos objetivo que contienen objetivos mínimos y óptimos para las características principales de las pruebas de seguimiento y optimización del tratamiento de la tuberculosis. La optimización del tratamiento de la tuberculosis consiste en iniciar o cambiar a un régimen eficaz de tratamiento de la tuberculosis que ofrezca una alta probabilidad de un buen resultado terapéutico. Los perfiles de productos objetivo también abarcan las pruebas de curación realizadas al final del tratamiento. La elaboración de los perfiles de los productos objetivo se basó en una encuesta a las partes interesadas, un análisis de rentabilidad y un análisis de la vía de atención al paciente. Se obtuvo información adicional de las partes interesadas mediante un proceso tipo Delphi, una consulta técnica y una convocatoria de comentarios públicos sobre un borrador del documento. Un grupo de desarrollo científico acordó los objetivos finales en una reunión de consenso. Para las características clasificadas de mayor importancia, el documento enumera: (i) alta precisión diagnóstica (sensibilidad y especificidad); (ii) tiempo hasta el resultado de óptimamente ≤ 2 horas y no más de 1 día; (iii) el tipo de muestra requerida debe ser mínimamente invasiva, fácil de obtener, como orina, aliento o sangre capilar, o una muestra respiratoria que vaya más allá del esputo; (iv) idealmente la prueba podría realizarse en un centro sanitario periférico sin laboratorio; y (v) la prueba debe ser asequible para los países de ingresos bajos y medios y permitir un acceso amplio y equitativo y su expansión. El uso de estos perfiles de producto objetivo debería facilitar el desarrollo de pruebas nuevas de seguimiento y optimización del tratamiento de la tuberculosis que sean precisas y accesibles para todas las personas que reciben tratamiento antituberculoso.


Assuntos
Líquidos Corporais , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Sensibilidade e Especificidade , Organização Mundial da Saúde , Escarro
16.
Nat Commun ; 14(1): 7519, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980337

RESUMO

The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Filogenia , Etiópia , Tuberculose/microbiologia , África Oriental
17.
Euro Surveill ; 28(42)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855907

RESUMO

BackgroundEuropean-specific policies for tuberculosis (TB) elimination require identification of key populations that benefit from TB screening.AimWe aimed to identify groups of foreign-born individuals residing in European countries that benefit most from targeted TB prevention screening.MethodsThe Tuberculosis Network European Trials group collected, by cross-sectional survey, numbers of foreign-born TB patients residing in European Union (EU) countries, Iceland, Norway, Switzerland and the United Kingdom (UK) in 2020 from the 10 highest ranked countries of origin in terms of TB cases in each country of residence. Tuberculosis incidence rates (IRs) in countries of residence were compared with countries of origin.ResultsData on 9,116 foreign-born TB patients in 30 countries of residence were collected. Main countries of origin were Eritrea, India, Pakistan, Morocco, Romania and Somalia. Tuberculosis IRs were highest in patients of Eritrean and Somali origin in Greece and Malta (both > 1,000/100,000) and lowest among Ukrainian patients in Poland (3.6/100,000). They were mainly lower in countries of residence than countries of origin. However, IRs among Eritreans and Somalis in Greece and Malta were five times higher than in Eritrea and Somalia. Similarly, IRs among Eritreans in Germany, the Netherlands and the UK were four times higher than in Eritrea.ConclusionsCountry of origin TB IR is an insufficient indicator when targeting foreign-born populations for active case finding or TB prevention policies in the countries covered here. Elimination strategies should be informed by regularly collected country-specific data to address rapidly changing epidemiology and associated risks.


Assuntos
Tuberculose , Humanos , Incidência , Estudos Transversais , Somália , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Europa (Continente)/epidemiologia
18.
JAC Antimicrob Resist ; 5(5): dlad108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799267

RESUMO

Objectives: Rapidly diagnosing drug-resistant TB is crucial for improving treatment and transmission control. WGS is becoming increasingly accessible and has added value to the diagnosis and treatment of TB. The aim of the study was to perform WGS to determine the rate of false-positive results of phenotypic drug susceptibility testing (pDST) and characterize the molecular mechanisms of resistance and transmission of mono- and polyresistant Mycobacterium (M.) tuberculosis. Methods: WGS was performed on 53 monoresistant and 25 polyresistant M. tuberculosis isolates characterized by pDST. Sequencing data were bioinformatically processed to infer mutations encoding resistance and determine the origin of resistance and phylogenetic relationship between isolates studied. Results: The data showed the variable sensitivity and specificity of WGS in comparison with pDST as the gold standard: isoniazid 92.7% and 92.3%; streptomycin 41.9% and 100.0%; pyrazinamide 15% and 94.8%; and ethambutol 75.0% and 98.6%, respectively. We found novel mutations encoding resistance to streptomycin (in gidB) and pyrazinamide (in kefB). Most isolates belonged to lineage 4 (80.1%) and the overall clustering rate was 11.5%. We observed lineage-specific gene variations encoding resistance to streptomycin and pyrazinamide. Conclusions: This study highlights the clinical potential of WGS in ruling out false-positive drug resistance following phenotypic or genetic drug testing, and recommend this technology together with the WHO catalogue in designing an optimal individualized treatment regimen and preventing the development of MDR TB. Our results suggest that resistance is primarily developed through spontaneous mutations or selective pressure.

19.
Front Public Health ; 11: 1204064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674674

RESUMO

Targeted next-generation sequencing (tNGS) from clinical specimens has the potential to become a comprehensive tool for routine drug-resistance (DR) prediction of Mycobacterium tuberculosis complex strains (MTBC), the causative agent of tuberculosis (TB). However, TB mainly affects low- and middle-income countries, in which the implementation of new technologies have specific needs and challenges. We propose a model for programmatic implementation of tNGS in settings with no or low previous sequencing capacity/experience. We highlight the major challenges and considerations for a successful implementation. This model has been applied to build NGS capacity in Namibia, an upper middle-income country located in Southern Africa and suffering from a high-burden of TB and TB-HIV, and we describe herein the outcomes of this process.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , África Austral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA